Arquitectura Ethernet
A finales de 1960, la universidad de hawai desarrolló una red de área amplia(WAN, Red que se extiende a través de un área geográfica mayor a una LAN).
La universidad necesitaba conectar varias computadora que estaban esparcidas a través de su campus. La pieza principal en el diseño de la red fue llamado Carrier-Sense Multiple Access with Collision Detection (CSMA/CD). Carrier-Sense
significa que la computadora escucha el cable de la red y espera hasta un periodo de silencio para poder mandar su mensaje. Multiple Access se refiere a que múltiples computadoras pueden estar conectadas en el mismo cable de red. Collision Detection es una protección contra mensajes chocando en el transito.
Las redes Ethernet pueden utilizar diferentes tipos de cableado, cada uno con sus beneficios y problemas. Los tres cableados más comunes son Thinnet, Thicknet, y Twisted Pair (Par trenzado).
Thinnet ó 10Base2 puede transmitir datos a 10mbps por Banda Base(señales digitales), pudiendo llegar el cableado hasta 185 metros. Se utiliza cable coaxial RG-58 el cual es bastante barato por lo que a esta red también se le conoce como CheapNet. Un mismo segmento de cable puede soportar hasta 30 computadoras. Es el más utilizado y recomendado para redes pequeñas. Utiliza la topologia local bus, donde un mismo cable recorre todas y cada una de las computadoras.
Thicknet ó 10Base5 transmite datos a 10mbps por Banda Base en un cableado que puede alcanzar 500 metros. El cableado es grueso y es utilizado principalmente para largas oficinas o hasta todas las computadoras de un edificio. Del cable principal (backbone) salen cables usualmente Par Trenzado que se conectan a directamente a cada una de las computadoras. Se pueden conectar hasta 100 computadoras con este cableado en un mismo segmento.
Twisted Pair ó 10BaseT transmite datos a 10mbps por Banda Base y utiliza un Hub (concentrador)desde el cual con cable Par Trenzado se conecta cada una de las computadoras quedando en forma similar a estrella. El Hub queda en el centro de la estrella y funciona como "repetidor". El cable desde el Hub hasta la computadora no debe de medir más de 100 metros
Token Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología física en anillo y técnica de acceso de paso de testigo, usando un frame de 3 bytes llamado token que viaja alrededor del anillo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.
Características principales
- Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación múltiple (MSAU), la red puede verse como si fuera una estrella. Tiene topologia física estrella y topología lógica en anillo.
- Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.
- La longitud total de la red no puede superar los 366 metros.
- La distancia entre una computadora y el MAU no puede ser mayor que 100 metros.
- A cada MAU se pueden conectar ocho computadoras.
- Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps.
- Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 110 Mbps pero la mayoría de redes no la soportan
Funciones de mantenimiento / supervisión
- Estación supervisora:
· Monitoriza la red.
· Envía periodicamente una trama de control (supervisor activo).
· Vigila la presencia del testigo:
· Si no lo encuentra tras cierto tiempo, lo pone de nuevo en circulación.
· Vigila la longitud del anillo para que sea mayor o igual que 24 bits (un testigo completo) añadiendo más si es necesario.
· Vigila la presencia de tramas huérfanas -> las retira:
· Marca el bit M de las tramas.
· Vigila la presencia de tramas mutiladas -> las retira.
Prioridades
- Reserva:
· Sobre el campo RR de una trama de datos.
· La encargada de retirar la trama pone en circulación el testigo con ese nivel de prioridad.
· Las reservas pueden reescribirse por otras de mayor prioridad, se guardan y se usan después
ANSI para la transmisión de datos en redes de computadoras de área extendida o local (LAN) mediante cable de fibra óptica. Se basa en la arquitectura token ring y permite una comunicación tipo Full Duplex. Dado que puede abastecer a miles de usuarios, una LAN FDDI suele ser empleada como backbone para una red de área amplia (WAN).
Funcionamiento
Una red FDDI utiliza dos arquitecturas token ring, una de ellas como apoyo en caso de que la principal falla. En cada anillo, el tráfico de datos se produce en dirección opuesta a la del otro.[1] Empleando uno solo de esos anillos la velocidad es de 100 Mbps y el alcance de 200 km, con los dos la velocidad sube a 200 Mbps pero el alcance baja a 100 km. La forma de operar de FDDI es muy similar a la de token ring, sin embargo, el mayor tamaño de sus anillos conduce a que su latencia sea superior y más de una trama puede estar circulando por un mismo anillo a la vez.FDDI se diseñó con el objeto de conseguir un sistema de tiempo real con un alto grado de fiabilidad. Se consideró como un objetivo de diseño la transmisión virtualmente libre de errores. Es por esto, entre otras cosas, que se optó por la fibra óptica como medio para el FDDI. Además se especificó que la tasa de error total del anillo completo FDDI no debiera exceder un error cada 1e9 bits (es decir, un error por gigabit) con una tasa de pérdida de paquetes de datos que tampoco excediese 1e9. En el caso que se produzca un fallo en una estación o que se rompa un cable, se evita automáticamente la zona del problema, sin la intervención del usuario, mediante lo que se conoce como “curva de retorno” (wrapback). Esto ocurre cuando el anillo FDDI detecta un fallo y direcciona el tráfico hacia el anillo secundario de modo que pueda reconfigurar la red. Todas las estaciones que se encuentran operando correctamente se mantienen en línea e inalteradas. Tan pronto como se corrige el problema, se restaura el servicio en dicha zona.
Características
La red FDDI tiene un ciclo de reloj de 125 MHz y utiliza un esquema de codificación 4B/5B que permite al usuario obtener una velocidad máxima de transmisión de datos de 100 Mbps. Ahora bien, la tasa de bits que la red es capaz de soportar efectivamente puede superar el 95% de la velocidad de transmisión máxima. Con FDDI es posible transmitir una trama de red, o diversas tramas de tamaño variable de hasta 4500 bytes durante el mismo acceso. El tamaño de trama máximo de 4500 bytes está determinado por la técnica de codificación 4B/5B de FDDI.Las especificaciones de FDDI permiten que existan un máximo de 500 estaciones FDDI (conexiones físicas) directamente sobre cada anillo paralelo. Las estaciones FDDI utilizan una dirección de 45 bytes, definida por la IEEE. La oficina de normalización del IEEE administra la asignación de las direcciones a todas las estaciones FDDI.
El cable de fibra multimodo con un diámetro exterior del núcleo de 62.5 micrones (um) y un diámetro exterior del revestimiento de 125 μm (62.5/125) es el tipo de medio con el que empezó a operar la red FDDI. Esto se debe a que el estándar FDDI especifica las características de estación a estación y de cable de planta sobre la base del cable 62.5/125 para proporcionar un puerto de referencia común que permite verificar si existe conformidad.
Frame Relay proporciona conexiones entre usuarios a través de una red pública, del mismo modo que lo haría una red privada punto a punto, esto quiere decir que es orientado a la conexión.
Las conexiones pueden ser del tipo permanente, (PVC, Permanent Virtual Circuit) o conmutadas (SVC, Switched circuito virtual. Por ahora sólo se utiliza la permanente. De hecho, su gran ventaja es la de reemplazar las líneas privadas por un sólo enlace a la red.
El uso de conexiones implica que los nodos de la red son conmutadores, y las tramas deben llegar ordenadas al destinatario, ya que todas siguen el mismo camino a través de la red, puede manejar tanto tráfico de datos como de voz.
Al contratar un servicio Frame Relay, contratamos un ancho de banda determinado en un tiempo determinado. A este ancho de banda se le conoce como CIR (Commited Information Rate). Esta velocidad, surge de la división de Bc (Committed Burst), entre Tc (el intervalo de tiempo). No obstante, una de las características de Frame Relay es su capacidad para adaptarse a las necesidades de las aplicaciones, pudiendo usar una mayor velocidad de la contratada en momentos puntuales, adaptándose muy bien al tráfico en ráfagas. Aunque la media de tráfico en el intervalo Tc no deberá superar la cantidad estipulada Bc.
Aplicaciones y Beneficios
- Reducción de complejidad en la red. elecciones virtuales múltiples son capaces de compartir la misma línea de acceso.
- Equipo a costo reducido. Se reduce las necesidades del “hardware” y el procesamiento simplificado ofrece un mayor rendimiento por su dinero.
- Mejora del desempeño y del tiempo de respuesta. penetracion directa entre localidades con pocos atrasos en la red.
- Mayor disponibilidad en la red. Las conexiones a la red pueden redirigirse automáticamente a diversos cursos cuando ocurre un error.
- Se pueden utilizar procedimientos de Calidad de Servicio (qos) basados en el funcionamiento Frame Relay.
- Tarifa fija. Los precios no son sensitivos a la distancia, lo que significa que los clientes no son penalizados por conexiones a largas distancias.
- Mayor flexibilidad. Las conexiones son definidas por los programas. Los cambios hechos a la red son más rápidos y a menor costo si se comparan con otros servicios.
- Ofrece mayores velocidades y rendimiento, a la vez que provee la eficiencia de ancho de banda que viene como resultado de los múltiples circuitos virtuales que comparten un puerto de una sola línea.
- Los servicios de Frame Relay son confiables y de alto rendimiento. Son un método económico de enviar datos, convirtiéndolo en una alternativa a las líneas dedicadas.
- El Frame Relay es ideal para usuarios que necesitan una conexión de mediana o alta velocidad para mantener un tráfico de datos entre localidades múltiples y distantes .
- Opcionales WEB, Libros virtuales: redes...
No hay comentarios:
Publicar un comentario